图像分割算法是用于农产品光电检测分级分类的基础任务,传统算法的优势在于结构简单,,但对复杂环境的适应性较弱。深度学习方法受到环境影响较少,但需大量样本支持,如何正确的获取样本,以及提高算法的整体效率是当前需要解决的主要问题。在实际使用中,深度学习由于性能问题尚无法完全取代传统算法,使用者可以根据具体的需求选择合适的算法。
进行药品配制。应用提取液对试剂稀释剂进行配制,在配制过程中要对pH值进行不断校正,结合要求进行蒸馏水与药品的添加,把控好温度,在室温条件下使用药品和酶试剂。再次,优选样品。以蔬菜检测为例,需要先将烂叶、枯叶去掉,在表皮到果肉1-2cm处提取出果肉,把控好提取量。如果蔬菜含有叶绿素以及其他色素,则要浸提整株,防止浸出大量色素对检测结果造成影响。有条件的实验室可选择用活性炭先进性脱色处理,也能减小色素对过滤液的干扰,作离心处理之后提取其中清液等待检测。实验表明,葱、姜、蒜、萝卜、番茄等汁液中由于存在对酶有影响的植物次生物质,通常会因为基质效应的干扰而出现假阳性,在处理这类样品过程中也需要浸提整株,以避免受到次生物质的影响。,使用移液器和试剂。
一般来讲,吸取酶、显色剂、底物的移液器需要贴好对应标签,一一对应提取试剂,坚持“只出不进”。而从试剂瓶中倒出的试剂同样不能倒回去,以免污染原试剂。值得注意的是,检测人员需要对操作时间严格把控,以免出现对照值太小的情况,所以要保证仪器稳定性,在室温环境下选择提取液及药品,在将底物放入后要快速检测,不得拖沓;要解决好样品吸光值过高的问题,所以要提高酶与其他药品的稳定,达到室温,同时防止样品次生物质的干扰;样品检测存在较小负值误差且在-10%范围内,属于允许范围,一般原因为人为操作误差。酶分解底物的合成速度极快,如果操作不熟练便会带来误差,导致抑制率出现负值。但对于有些农产品,如红苹果,红枣等缺陷识别时,病变区域R色值区间会明显异于正常区域,此时采用BGR中的R值作为阙值区别缺陷区域就是合适的。边缘检测算法是一种经典图像分割算法,主要是利用连通区域边缘对比度的阶跃变化,通过其梯度变化找出边缘,从而达到分割图像的目的,相较于阙值法对环境光变化的容忍性更好。
以上信息由专业从事大米农残检测仪器的安徽金标准于2024/12/31 12:52:47发布
转载请注明来源:http://xuancheng.mf1288.com/ahjbzjc-2830590989.html